
Systems-Oriented Multi-Dimensional Indexes:
SP-GiST - The Case for Space-Partitioning Trees

Walid G. Aref - Purdue University and Alexandria University-Egypt

1

Introduction

• Many emerging database applications warrant the
use of non-traditional indexing mechanisms
beyond B+-trees and hash tables
• Database vendors have realized this need and

have initiated efforts to support several non-
traditional indexes
• e.g., Oracle Spatial and IBM DB2

2

Hurdles: (1) Many New Indexes

• One of the major hurdles in implementing non-
traditional indexes inside a database engine is:
• The very wide variety of such indexes

• Example:
• Spatio-temporal Access Methods (2003)

~ 45 indexes
• Spatio-Temporal Access Methods: Part 2 (2003 - 2010)

~ 90 indexes
• Spatio-Temporal Access Methods: A Survey (2010 - 2017)

~ 170 indexes
• Very hard for systems engineers to keep up

3

Hurdles: (2) Overhead in Realizing the Index

• Tremendous overhead associated with
realizing and integrating any of these
indexes inside the engine
• It can take many programmer-months to

realize one index inside the DBMS
• In addition to realizing the logic of the

index operations
1. Concurrency control, locking, lock-free
2. Recovery in the presence of failures,

transaction aborts, and system crashes
3. Resource management
4. Disk, memory, and buffer management

4

Generalized Search Trees (GiST and SP-GiST)

• Software engineering frameworks for rapid prototyping of indexes inside a
database engine
• Umbrella indexes that generalize a certain class of indexes
• GiST [VLDB 1995]:

• Generalizes B+-tree-like trees
• R-trees, SR-trees, and RD-trees

• Balanced trees
• Every node maps to a disk page

• SP-GiST [SSDBM 2001, ICDE 2006]
• Generalizes quad-tree-like class of indexes

• Variants of quadtrees and tries
• Unbalanced skinny trees
• Multiple tree nodes map to a disk page

• GiST and SP-GiST are realized inside PostgreSQL
5

Generalized Search Trees (GiST and SP-GiST)

• Have internal methods that furnish general database functionalities
• e.g., generalized search and insert algorithms

• User-defined external methods and parameters
• Tailor the generalized index into one instance index from the corresponding

index class

6

Space-partitioning Generalized
Search Tree
• Supports disk-based trie variants, disk-based quadtree variants, and disk-based

kd-trees
• SP-GiST is realized inside of PostgreSQL (Since PostgreSQL 8.0-8.5, 9.2 till today)
• Has user-specified pluggable modules and parameters that when provided:

• Allows the instantiation of one member space-partitioning index with less effort (in a
matter of days)

7

SP-GiST
Internal Methods

SP-GiST
Internal Methods

SP-GiST
Internal Methods

Instantiated index 1 Instantiated index 2

Space-Partitioning Trees

• Partition the multi-dimensional space into disjoint (non-overlapping)
regions
• Partitioning can be either
• Space-driven:

• Decompose the space into equal-sized partitions regardless of the data distribution
• Data-driven:

• Split the data set into equal portions based on some criteria, e.g., based on one of the
dimensions

8

Space-Partitioning Trees

• Partition the multi-dimensional space into disjoint (non-overlapping)
regions

9

Space-Partitioning Trees (2)

• Partition the multi-dimensional space into disjoint (non-overlapping)
regions

10

Space-Partitioning Trees (3)

• Partition the multi-dimensional space into disjoint (non-overlapping)
regions

11(c) PR Quadtree

Space-Partitioning Trees (4)

• Partition the multi-dimensional space into disjoint (non-overlapping)
regions

12

(d) Trie

SP-GiST Parameters and Pluggable Modules

• Introduce SP-GiST Parameters and Pluggable
Modules in the context of the trie data structure
• By setting these parameters differently we can

realize various types of trie data structures

13

SP-GiST
Internal Methods

SP-GiST Parameters and Pluggable Modules (2)

• Path Shrink
• Vertical shrinking
• Avoid lengthy and skinny paths from a

root to a leaf
• Paths of one child can be collapsed

into one node
• Leaf Shrink: Shrinking single child

nodes at the leaf level nodes à
Patricia trie
• Path Shrink: allow for shrinking single

child nodes at the non-leaf level
nodes
• No Tree Shrink: No shrinking at all à

The regular trie
14

No Tree Shrink Leaf Shrink:
Patricia Trie

Path Shrink

SP-GiST Parameters and Pluggable Modules (3)

• Node Shrink
• Horizontal shrinking
• Avoid empty partitions – problem

with space-driven partitioning
• The question is: Do we allow that

empty partitions be omitted?
• Node Shrink: Eliminate empty

partitions à The forest trie
• No Node Shrink: The standard trie

15

No Node Shrink Node Shrink

SP-GiST Parameters and Pluggable Modules (4)

• Clustering:
• Address most serious issue facing

disk-based space-partitioning trees
• Problem: Tree nodes do not map

directly to disk pages
• Much smaller than disk pages.

• Question: How do we pack tree nodes
into disk pages?
• Objective: Reduce disk I/Os for tree

search and update
• An optimal node-packing algorithm

already exists that solves this issue
[VLDB 96].

16
A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan. Clustering techniques for minimizing external path
length. In VLDB, pages 342–353, 1996.

SP-GiST Parameters and Pluggable Modules (5)

• NodePredicate:
• Specifies the predicate to be used in the index nodes of the tree

• A letter in a trie (e.g., “= a”)
• A quadrant in a quadtree

• (≥ x1 ∧ ≤ x2 ∧ ≥ y1 ∧ ≤ y2)

• KeyType:
• Gives the type of the data in the leaf level of the tree
• E.g.,

• “Point” is the key type in an MX quadtree
• “Word” is the key type in a trie
• These data types have to be pre-defined by the user.

17

SP-GiST Parameters and Pluggable Modules (6)

• NumberofSpacePartitions:
• Specifies the number of disjoint partitions produced at each decomposition

• E.g.,
• 4 for a quadtree
• 2 for kd-tree
• 8 for an octree
• 27 for an English Dictionary trie

• Resolution:
• Limits the number of space decompositions and is set depending on the required

granularity

• BucketSize:
• Specifies the maximum number of data items a data node can hold

18

SP-GiST Parameters and Pluggable Modules (7)

• Consistent(Node Entry, Query Predicate, level):
• Find out which child branch in the node is consistent with the

query predicate (e.g., range query or point query predicates)

• Boolean function
• Return: True, when Node Entry satisfies the Query Predicate

False, otherwise

• Used by the SP-GiST tree search method as a navigation guide through
the tree

• Test may differ based on what level in the tree we are at
• E.g., in kd-tree may check x dimension vs. y dimension at a different level

19

Node

Find out
which branch
is consistent

SP-GiST Parameters and Pluggable Modules (8)

• PickSplit(EntriesInNode, level, splitNodes, splitPredicates):
• Specifies how the space is decomposed and how the data items are

distributed over the new partitions
• Invoked by internal method Insert() when a node-split is needed
• EntriesInNode:

• Set of entries that cannot fit in a node PickSplit
• BucketSize+1 entries

• Define tree’s strategy on how to split the entries into a number of
partitions (equal to NumberOfSpacePartitions)

• Returns a Boolean that indicates if further partitioning should take place
• Level: Used in the splitting criterion because splitting will depend on the

current decomposition level of the tree
• E.g., in a trie, at Level i, splitting will be according to the ith character of the word

• splitNodes: Result of pickSplit
• Array of buckets; each contains elements to be inserted in each child node

• splitPredicates: Array of predicates; one for each child
20

Overfull Node

NumberOfSpacePartitions

PickSplit

Realization of a Trie and a kd-tree using SP-GiST

21

Realization of the MX-CIF Quadtree using SP-
GiST
• Quadtree variation for storing

rectangles
• Associate each rectangle R with

the quadtree node
corresponding to the smallest
quadtree block that contains R
• Rectangles can be associated

with both leaf and non-leaf
nodes
• Subdivision stops when a node’s

block contains no rectangles
• More than one rectangle can be

associated with a given node

22

Realization of the MX-CIF Quadtree using SP-
GiST
• PickSplit is not

applicable
• In the MX-CIF

insertion algorithm,
there is not much
choice as to where a
rectangle gets
inserted
• No choices to be

made for PickSplit

23

Realization of the MX Quadtree using SP-GiST

24

Realization of the PR Quadtree using SP-GiST

25

Realization of the PMR Quadtree using
SP-GiST

26

SP-GiST Internal Methods

• SP-GiST provides a set of internal methods that are common for all
space-partitioning trees
• The Insert(), Search(), and Delete() methods
• The core of SP-GiST and are the same for all SP-GiST-based indexes

27

SP-GiST Insert

28

SP-GiST Insert (Cont’d)

29

SP-GiST Search

30

Realizing SP-GiST Inside PostgreSQL

• PostgreSQL:
• An open-source object-relational

database management system
• Extensible as most of its

functionalities are table-driven
• Information about the available

data types, access methods,
operators, etc., is stored in the
system catalog tables

• PostgreSQL incorporates user-
defined functions into the engine
through dynamically loadable
modules, e.g., shared libraries.

31

Operator classes specify the data type and the operators
on which a certain access method can work

32

Supported Query Types in SP-GiST

• We only allow for the wildcard, ‘?’, that matches any single character

33

Operator Definitions for the Trie and the kd-
tree in SP-GiST

34

Operator Class for Trie and kd-tree using SP-GiST

• Trie Operators ‘=’, ‘#=’, and ‘?=’ to support the equality queries, the
prefix queries, and the regular expression queries

35

NN Distance function

RE operator
Prefix operator

Equality operator

NN search operator

Trie and kd-tree Index Creation and Querying

36

Generic Nearest-Neighbor Algorithm for SP-GiST

Insert the root node into the priority queue with minimum distance
While (priority queue is not empty)
{

Retrieve the top of the queue into P
If (P is an object) Then

Report P as the next NN to the query object
Else

Compute the minimum distances between the query object and P’s children
Insert P’s children into their proper positions in the queue based on their distances

}

37
G.R.Hjaltason and H. Samet. Ranking in spatial databases. In SDD, pages 83–95, 1995.

Experiments

• Demonstrate the extensibility of SP-GiST to rapidly prototype new
indexes and
• Highlight strengths and weaknesses of SP-GiST indexes over B+-tree

and R-tree indexes
• Realized in PostgreSQL using SP-GiST the following disk-based

indexes:
• Disk-based Patricia trie
• Disk-based kd-tree
• Disk-based point quadtree
• Disk-based PMR quadtree
• Disk-based suffix tree

38

Number and Percentage of External Methods’
Code Lines

• Developer provides < 10% of total index coding
• The other 90% of the code is provided as the SP-GiST core

39

SP-GiST Patricia Trie vs. B+-tree for Text String
Data
• Exact match search:
• Patricia trie has > 150% search

time improvement over the B+-
tree.
• Patricia trie scales better with the

increase in data size

• Prefix match search:
• B+-tree has better performance
• Keys sorted in the B+-tree leaf

nodes
• Better packing into disk pages in

contrast to the trie
40

SP-GiST Patricia Trie vs. B+-tree for Text String
Data
• Regular expression search: We only allow for the wildcard, ‘?’, that matches any single character
• B+-tree performance is very sensitive to the positions of the wildcard; ‘?’ in the search string

• E.g., ?at?y

• Trie > 2 orders of magnitude search time improvement over the B+-tree

41

SP-GiST Patricia Trie vs. B+-tree Insertion Time
and Index Size
• B+-tree scales better
• Trie involves a higher number of nodes and a higher number of node splits than

the B+-tree because the trie node size is much smaller than the B+-tree node size

42

SP-GiST Patricia Trie vs. B+-tree Node and Page
Heights
• Maximum tree height in nodes and pages
• Although trie has higher maximum node-height, the max. page-height is almost the same as the B+-tree page-height
• Thanks to SP-GiST’s clustering technique that minimizes the tree maximum page height

43

Performance of the R-tree vs. the PMR Quadtree

• PMR quadtree against the R-tree for
indexing line segment datasets
• Measured:

• Insertion time
• Exact match search time
• Range (window) search time

• R-tree has a better performance than
that of the PMR quadtree.
• The relative insertion performance

between the R-tree and the PMR
quadtree is almost constant with the
increase in the data size
• Search performance gap decreases

with the increase of the data size
44

SP-GiST Nearest-Neighbor Search Performance
• Various SP- GiST instantiations of index structures

• kd-tree
• point quadtree
• patricia trie

• Euclidean distance used as the distance function for
the kd-tree and point quadtree

• Hamming distance used as the distance function for
the trie

• Varied k from 8 to 1024
• Trie is much slower than kd-tree and point quadtree
• Comparison in trie is performed character by

character
• Makes convergence to the next NN relatively slow
• Comparison in the kd-tree and quadtree is Partition-

based

45

Conclusions

• SP-GiST as a generalized search tree inside a database engine
• Realized various versions of tries, quadtrees, kd-trees, and suffix trees
• Experiments demonstrate potential gain of SP-GiST indexes

• Trie has > 150% search performance improvement over B+-tree in the case of the
exact match search,

• Has > 2 orders of magnitude search performance gain over the B+-tree for regular
expression match search.

• kd-tree also has more than 300% search performance improvement over the R-tree
for point match search

• realized NN-search inside SP-GiST and substring match operations
• In addition to performance gains and the advanced search functionalities of SP-GiST

indexes, the ability to rapidly prototype these indexes inside a DBMS is most
attractive

46

Further Reading

• Mohamed Y Eltabakh, Mourad Ouzzani, Walid G. Aref, Duplicate
Elimination in Space-partitioning Tree Indexes, 19th International
Conference on Scientific and Statistical Database Management (SSDBM),
2007.
• Consistency Reference is based on the idea of reporting an object at a certain point

that is computed at the query run-time. Consistency Reference is embedded inside
the SP-GiST INDEX-SCAN operator.

• Consistency Reference computes, at the query run-time, a zero-extent object, e.g.,
Point, called CR, for each database object O satisfying a given query Q.

• Thanaa M. Ghanem, Rahul Shah, Mohamed F. Mokbel, Walid G. Aref,
Jeffrey Scott Vitter, Bulk operations for space-partitioning trees, 20th
International Conference on Data Engineering (ICDE), Pages 29-40, 2004.
• Bulk loading and bulk insertion

47

https://ieeexplore.ieee.org/abstract/document/4274963/
https://ieeexplore.ieee.org/abstract/document/1319982/

Thank you!

48The authors acknowledge the support of the National Science Foundation
under Grant Numbers III-1815796 andIIS-1910216.

